Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
| Total | |
95.24% |
60 / 63 |
|
66.67% |
4 / 6 |
CRAP | |
0.00% |
0 / 1 |
| Kmeans | |
95.24% |
60 / 63 |
|
66.67% |
4 / 6 |
28 | |
0.00% |
0 / 1 |
| __construct | |
100.00% |
5 / 5 |
|
100.00% |
1 / 1 |
1 | |||
| cluster | |
100.00% |
7 / 7 |
|
100.00% |
1 / 1 |
3 | |||
| getCentroids | |
0.00% |
0 / 1 |
|
0.00% |
0 / 1 |
2 | |||
| generateClusters | |
92.59% |
25 / 27 |
|
0.00% |
0 / 1 |
14.08 | |||
| nearestClusterCenter | |
100.00% |
8 / 8 |
|
100.00% |
1 / 1 |
3 | |||
| kpp | |
100.00% |
15 / 15 |
|
100.00% |
1 / 1 |
6 | |||
| 1 | <?php |
| 2 | /** |
| 3 | * Jingga |
| 4 | * |
| 5 | * PHP Version 8.1 |
| 6 | * |
| 7 | * @package phpOMS\Algorithm\Clustering |
| 8 | * @copyright Dennis Eichhorn |
| 9 | * @license OMS License 2.0 |
| 10 | * @version 1.0.0 |
| 11 | * @link https://jingga.app |
| 12 | */ |
| 13 | declare(strict_types=1); |
| 14 | |
| 15 | namespace phpOMS\Algorithm\Clustering; |
| 16 | |
| 17 | use phpOMS\Math\Topology\MetricsND; |
| 18 | |
| 19 | /** |
| 20 | * Clustering points |
| 21 | * |
| 22 | * @package phpOMS\Algorithm\Clustering |
| 23 | * @license OMS License 2.0 |
| 24 | * @link https://jingga.app |
| 25 | * @see ./clustering_overview.png |
| 26 | * @since 1.0.0 |
| 27 | */ |
| 28 | final class Kmeans |
| 29 | { |
| 30 | /** |
| 31 | * Epsilon for float comparison. |
| 32 | * |
| 33 | * @var float |
| 34 | * @since 1.0.0 |
| 35 | */ |
| 36 | public const EPSILON = 4.88e-04; |
| 37 | |
| 38 | /** |
| 39 | * Metric to calculate the distance between two points |
| 40 | * |
| 41 | * @var \Closure |
| 42 | * @since 1.0.0 |
| 43 | */ |
| 44 | private \Closure $metric; |
| 45 | |
| 46 | /** |
| 47 | * Points of the cluster centers |
| 48 | * |
| 49 | * @var PointInterface[] |
| 50 | * @since 1.0.0 |
| 51 | */ |
| 52 | private $clusterCenters = []; |
| 53 | |
| 54 | /** |
| 55 | * Constructor |
| 56 | * |
| 57 | * @param null|\Closure $metric metric to use for the distance between two points |
| 58 | * |
| 59 | * @since 1.0.0 |
| 60 | */ |
| 61 | public function __construct(\Closure $metric = null) |
| 62 | { |
| 63 | $this->metric = $metric ?? function (PointInterface $a, PointInterface $b) { |
| 64 | $aCoordinates = $a->coordinates; |
| 65 | $bCoordinates = $b->coordinates; |
| 66 | |
| 67 | return MetricsND::euclidean($aCoordinates, $bCoordinates); |
| 68 | }; |
| 69 | |
| 70 | //$this->generateClusters($points, $clusters); |
| 71 | } |
| 72 | |
| 73 | /** |
| 74 | * Find the cluster for a point |
| 75 | * |
| 76 | * @param PointInterface $point Point to find the cluster for |
| 77 | * |
| 78 | * @return null|PointInterface Cluster center point |
| 79 | * |
| 80 | * @since 1.0.0 |
| 81 | */ |
| 82 | public function cluster(PointInterface $point) : ?PointInterface |
| 83 | { |
| 84 | $bestCluster = null; |
| 85 | $bestDistance = \PHP_FLOAT_MAX; |
| 86 | |
| 87 | foreach ($this->clusterCenters as $center) { |
| 88 | if (($distance = ($this->metric)($center, $point)) < $bestDistance) { |
| 89 | $bestCluster = $center; |
| 90 | $bestDistance = $distance; |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | return $bestCluster; |
| 95 | } |
| 96 | |
| 97 | /** |
| 98 | * Get cluster centroids |
| 99 | * |
| 100 | * @return array |
| 101 | * |
| 102 | * @since 1.0.0 |
| 103 | */ |
| 104 | public function getCentroids() : array |
| 105 | { |
| 106 | return $this->clusterCenters; |
| 107 | } |
| 108 | |
| 109 | /** |
| 110 | * Generate the clusters of the points |
| 111 | * |
| 112 | * @param PointInterface[] $points Points to cluster |
| 113 | * @param int<0, max> $clusters Amount of clusters |
| 114 | * |
| 115 | * @return void |
| 116 | * |
| 117 | * @since 1.0.0 |
| 118 | */ |
| 119 | public function generateClusters(array $points, int $clusters) : void |
| 120 | { |
| 121 | $n = \count($points); |
| 122 | $clusterCenters = $this->kpp($points, $clusters); |
| 123 | $coordinates = \count($points[0]->coordinates); |
| 124 | |
| 125 | while (true) { |
| 126 | foreach ($clusterCenters as $center) { |
| 127 | for ($i = 0; $i < $coordinates; ++$i) { |
| 128 | $center->setCoordinate($i, 0); |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | foreach ($points as $point) { |
| 133 | $clusterPoint = $clusterCenters[$point->group]; |
| 134 | |
| 135 | ++$clusterPoint->group; |
| 136 | for ($i = 0; $i < $coordinates; ++$i) { |
| 137 | $clusterPoint->setCoordinate($i, $clusterPoint->getCoordinate($i) + $point->getCoordinate($i)); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | foreach ($clusterCenters as $center) { |
| 142 | for ($i = 0; $i < $coordinates; ++$i) { |
| 143 | // @todo Invalid center coodinate value in like 5 % of the runs |
| 144 | $center->setCoordinate($i, $center->getCoordinate($i) / ($center->group === 0 ? 1 : $center->group)); |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | $changed = 0; |
| 149 | foreach ($points as $point) { |
| 150 | $min = $this->nearestClusterCenter($point, $clusterCenters)[0]; |
| 151 | |
| 152 | if ($min !== $point->group) { |
| 153 | ++$changed; |
| 154 | $point->group = $min; |
| 155 | } |
| 156 | } |
| 157 | |
| 158 | if ($changed <= $n * self::EPSILON || $n * self::EPSILON < 2) { |
| 159 | break; |
| 160 | } |
| 161 | } |
| 162 | |
| 163 | foreach ($clusterCenters as $key => $center) { |
| 164 | $center->group = $key; |
| 165 | $center->name = (string) $key; |
| 166 | } |
| 167 | |
| 168 | $this->clusterCenters = $clusterCenters; |
| 169 | } |
| 170 | |
| 171 | /** |
| 172 | * Get the index and distance to the nearest cluster center |
| 173 | * |
| 174 | * @param PointInterface $point Point to get the cluster for |
| 175 | * @param PointInterface[] $clusterCenters All cluster centers |
| 176 | * |
| 177 | * @return array [index, distance] |
| 178 | * |
| 179 | * @since 1.0.0 |
| 180 | */ |
| 181 | private function nearestClusterCenter(PointInterface $point, array $clusterCenters) : array |
| 182 | { |
| 183 | $index = $point->group; |
| 184 | $dist = \PHP_FLOAT_MAX; |
| 185 | |
| 186 | foreach ($clusterCenters as $key => $cPoint) { |
| 187 | $d = ($this->metric)($cPoint, $point); |
| 188 | |
| 189 | if ($dist > $d) { |
| 190 | $dist = $d; |
| 191 | $index = $key; |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | return [$index, $dist]; |
| 196 | } |
| 197 | |
| 198 | /** |
| 199 | * Initializae cluster centers |
| 200 | * |
| 201 | * @param PointInterface[] $points Points to use for the cluster center initialization |
| 202 | * @param int<0, max> $n Amount of clusters to use |
| 203 | * |
| 204 | * @return PointInterface[] |
| 205 | * |
| 206 | * @since 1.0.0 |
| 207 | */ |
| 208 | private function kpp(array $points, int $n) : array |
| 209 | { |
| 210 | $clusters = [clone $points[\mt_rand(0, \count($points) - 1)]]; |
| 211 | $d = \array_fill(0, $n, 0.0); |
| 212 | |
| 213 | for ($i = 1; $i < $n; ++$i) { |
| 214 | $sum = 0; |
| 215 | |
| 216 | foreach ($points as $key => $point) { |
| 217 | $d[$key] = $this->nearestClusterCenter($point, \array_slice($clusters, 0, 5))[1]; |
| 218 | $sum += $d[$key]; |
| 219 | } |
| 220 | |
| 221 | $sum *= \mt_rand(0, \mt_getrandmax()) / \mt_getrandmax(); |
| 222 | |
| 223 | foreach ($d as $key => $di) { |
| 224 | $sum -= $di; |
| 225 | |
| 226 | if ($sum <= 0) { |
| 227 | $clusters[$i] = clone $points[$key]; |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | foreach ($points as $point) { |
| 233 | $point->group = ($this->nearestClusterCenter($point, $clusters)[0]); |
| 234 | } |
| 235 | |
| 236 | return $clusters; |
| 237 | } |
| 238 | } |