Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
0.00% |
0 / 30 |
|
0.00% |
0 / 1 |
CRAP | |
0.00% |
0 / 1 |
GeneticOptimization | |
0.00% |
0 / 30 |
|
0.00% |
0 / 1 |
90 | |
0.00% |
0 / 1 |
__construct | n/a |
0 / 0 |
n/a |
0 / 0 |
1 | |||||
optimize | |
0.00% |
0 / 30 |
|
0.00% |
0 / 1 |
72 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Algorithm\Optimization |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Algorithm\Optimization; |
16 | |
17 | /** |
18 | * Perform genetic algorithm (GA). |
19 | * |
20 | * @package phpOMS\Algorithm\Optimization |
21 | * @license OMS License 2.0 |
22 | * @link https://jingga.app |
23 | * @since 1.0.0 |
24 | */ |
25 | class GeneticOptimization |
26 | { |
27 | /** |
28 | * Constructor |
29 | * |
30 | * @since 1.0.0 |
31 | * @codeCoverageIgnore |
32 | */ |
33 | private function __construct() |
34 | { |
35 | } |
36 | |
37 | /* |
38 | // Fitness function (may require to pass solution space as \Closure variable) |
39 | // E.g. |
40 | // highest value of some sorts (e.g. profit) |
41 | // most elements (e.g. jobs) |
42 | // lowest costs |
43 | // combination of criteria = points (where some criteria are mandatory/optional) |
44 | public static function fitness($x) |
45 | { |
46 | return $x; |
47 | } |
48 | |
49 | public static function mutate($parameters, $mutationRate) |
50 | { |
51 | for ($i = 0; $i < \count($parameters); $i++) { |
52 | if (\mt_rand(0, 1000) / 1000 < $mutationRate) { |
53 | $parameters[$i] = 1 - $parameters[$i]; |
54 | } |
55 | } |
56 | |
57 | return $parameters; |
58 | } |
59 | |
60 | public static function crossover($parent1, $parent2, $parameterCount) |
61 | { |
62 | $crossoverPoint = \mt_rand(1, $parameterCount - 1); |
63 | |
64 | $child1 = \array_merge( |
65 | \array_slice($parent1, 0, $crossoverPoint), |
66 | \array_slice($parent2, $crossoverPoint) |
67 | ); |
68 | |
69 | $child2 = \array_merge( |
70 | \array_slice($parent2, 0, $crossoverPoint), |
71 | \array_slice($parent1, $crossoverPoint) |
72 | ); |
73 | |
74 | return [$child1, $child2]; |
75 | } |
76 | */ |
77 | |
78 | /** |
79 | * Perform optimization |
80 | * |
81 | * @example See unit test for example use case |
82 | * |
83 | * @param array<array> $population List of all elements with ther parameters (i.e. list of "objects" as arrays). |
84 | * The constraints are defined as array values. |
85 | * @param \Closure $fitness Fitness function calculates score/feasability of solution |
86 | * @param \Closure $mutate Mutation function to change the parameters of an "object" |
87 | * @param \Closure $crossover Crossover function to exchange parameter values between "objects". |
88 | * Sometimes single parameters can be exchanged but sometimes interdependencies exist between parameters which is why this function is required. |
89 | * @param int $generations Number of generations to create |
90 | * @param float $mutationRate Rate at which parameters are changed. |
91 | * How this is used depends on the mutate function. |
92 | * |
93 | * @return array{solutions:array, fitnesses:float[]} |
94 | * |
95 | * @since 1.0.0 |
96 | */ |
97 | public static function optimize( |
98 | array $population, |
99 | \Closure $fitness, |
100 | \Closure $mutate, |
101 | \Closure $crossover, |
102 | int $generations = 500, |
103 | float $mutationRate = 0.1 |
104 | ) : array |
105 | { |
106 | $populationSize = \count($population); |
107 | $parameterCount = $populationSize === 0 ? 0 : \count(\reset($population)); |
108 | |
109 | // Genetic Algorithm Loop |
110 | for ($generation = 0; $generation < $generations; ++$generation) { |
111 | $fitnessScores = []; |
112 | foreach ($population as $parameters) { |
113 | $fitnessScores[] = ($fitness)($parameters); |
114 | } |
115 | |
116 | // Select parents for crossover based on fitness scores |
117 | $parents = []; |
118 | for ($i = 0; $i < $populationSize; ++$i) { |
119 | do { |
120 | $parentIndex1 = \array_rand($population); |
121 | $parentIndex2 = \array_rand($population); |
122 | } while ($parentIndex1 === $parentIndex2); |
123 | |
124 | $parents[] = $fitnessScores[$parentIndex1] > $fitnessScores[$parentIndex2] |
125 | ? $population[$parentIndex1] |
126 | : $population[$parentIndex2]; |
127 | } |
128 | |
129 | // Crossover and mutation to create next generation |
130 | $newPopulation = []; |
131 | for ($i = 0; $i < $populationSize; $i += 2) { |
132 | $crossover = ($crossover)($parents[$i], $parents[$i + 1], $parameterCount); |
133 | |
134 | $child1 = ($mutate)($crossover[0], $mutationRate); |
135 | $child2 = ($mutate)($crossover[1], $mutationRate); |
136 | |
137 | $newPopulation[] = $child1; |
138 | $newPopulation[] = $child2; |
139 | } |
140 | |
141 | $population = $newPopulation; |
142 | } |
143 | |
144 | $fitnesses = []; |
145 | |
146 | foreach ($population as $key => $parameters) { |
147 | $fitnesses[$key] = ($fitness)($parameters); |
148 | } |
149 | |
150 | \asort($fitnesses); |
151 | |
152 | return [ |
153 | 'solutions' => $population, |
154 | 'fitnesses' => $fitnesses, |
155 | ]; |
156 | } |
157 | } |