Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
100.00% |
13 / 13 |
|
100.00% |
2 / 2 |
CRAP | |
100.00% |
1 / 1 |
Forensics | |
100.00% |
13 / 13 |
|
100.00% |
2 / 2 |
6 | |
100.00% |
1 / 1 |
__construct | n/a |
0 / 0 |
n/a |
0 / 0 |
1 | |||||
benfordAnalysis | |
100.00% |
9 / 9 |
|
100.00% |
1 / 1 |
3 | |||
expectedBenfordDistribution | |
100.00% |
4 / 4 |
|
100.00% |
1 / 1 |
2 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Business\Finance |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Business\Finance; |
16 | |
17 | /** |
18 | * Forensics class. |
19 | * |
20 | * @package phpOMS\Business\Finance |
21 | * @license OMS License 2.0 |
22 | * @link https://jingga.app |
23 | * @since 1.0.0 |
24 | */ |
25 | final class Forensics |
26 | { |
27 | /** |
28 | * Constructor |
29 | * |
30 | * @since 1.0.0 |
31 | * @codeCoverageIgnore |
32 | */ |
33 | private function __construct() |
34 | { |
35 | } |
36 | |
37 | /** |
38 | * Perform the Benford analysis |
39 | * |
40 | * @param array $data Data to analyze |
41 | * |
42 | * @return array |
43 | * |
44 | * @since 1.0.0 |
45 | */ |
46 | public static function benfordAnalysis(array $data) : array |
47 | { |
48 | $digits = \array_fill(1, 9, 0); |
49 | $size = \count($data); |
50 | |
51 | foreach ($data as $number) { |
52 | $digit = \substr((string) $number, 0, 1); |
53 | ++$digits[(int) $digit]; |
54 | } |
55 | |
56 | $results = []; |
57 | foreach ($digits as $digit => $count) { |
58 | $results[$digit] = $count / $size; |
59 | } |
60 | |
61 | return $results; |
62 | } |
63 | |
64 | /** |
65 | * Calculate the general Benford distribution |
66 | * |
67 | * @return array |
68 | * |
69 | * @since 1.0.0 |
70 | */ |
71 | public static function expectedBenfordDistribution() : array |
72 | { |
73 | $expected = []; |
74 | for ($i = 1; $i <= 9; ++$i) { |
75 | $expected[$i] = \log10(1 + 1 / $i); |
76 | } |
77 | |
78 | return $expected; |
79 | } |
80 | } |