Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
94.59% |
35 / 37 |
|
77.78% |
7 / 9 |
CRAP | |
0.00% |
0 / 1 |
Metrics | |
94.59% |
35 / 37 |
|
77.78% |
7 / 9 |
14.03 | |
0.00% |
0 / 1 |
__construct | n/a |
0 / 0 |
n/a |
0 / 0 |
1 | |||||
getCustomerRetention | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getCoefficientOfRetention | |
0.00% |
0 / 1 |
|
0.00% |
0 / 1 |
2 | |||
predictCustomerRetention | |
0.00% |
0 / 1 |
|
0.00% |
0 / 1 |
2 | |||
customerActiveProbability | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getBerrysCustomerProfits | |
100.00% |
3 / 3 |
|
100.00% |
1 / 1 |
1 | |||
calculateMailingSuccessEstimation | |
100.00% |
10 / 10 |
|
100.00% |
1 / 1 |
2 | |||
migrationModel | |
100.00% |
6 / 6 |
|
100.00% |
1 / 1 |
1 | |||
migrationModelPurchaseProbability | |
100.00% |
5 / 5 |
|
100.00% |
1 / 1 |
2 | |||
createCustomerPurchaseProbabilityMatrix | |
100.00% |
9 / 9 |
|
100.00% |
1 / 1 |
3 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Business\Marketing |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Business\Marketing; |
16 | |
17 | use phpOMS\Math\Matrix\IdentityMatrix; |
18 | use phpOMS\Math\Matrix\Matrix; |
19 | use phpOMS\Math\Matrix\Vector; |
20 | |
21 | /** |
22 | * Marketing Metrics |
23 | * |
24 | * This class provided basic marketing metric calculations |
25 | * |
26 | * @package phpOMS\Business\Marketing |
27 | * @license OMS License 2.0 |
28 | * @link https://jingga.app |
29 | * @since 1.0.0 |
30 | */ |
31 | final class Metrics |
32 | { |
33 | /** |
34 | * Constructor |
35 | * |
36 | * @since 1.0.0 |
37 | * @codeCoverageIgnore |
38 | */ |
39 | private function __construct() |
40 | { |
41 | } |
42 | |
43 | /** |
44 | * Calculate customer retention |
45 | * |
46 | * @latex r = \frac{ce - cn}{cs} |
47 | * |
48 | * @param int $ce Customer at the end of the period |
49 | * @param int $cn New customers during period |
50 | * @param int $cs Customers at the start of the period |
51 | * |
52 | * @return float Returns the customer retention |
53 | * |
54 | * @since 1.0.0 |
55 | */ |
56 | public static function getCustomerRetention(int $ce, int $cn, int $cs) : float |
57 | { |
58 | return ($ce - $cn) / $cs; |
59 | } |
60 | |
61 | /** |
62 | * Calcualte the coefficient of retention |
63 | * |
64 | * @param float $retentionRate Observed retention rate (optionally use the average) |
65 | * @param float $rc Retention rate ceiling |
66 | * @param int $t Period |
67 | * |
68 | * @return float |
69 | * |
70 | * @since 1.0.0 |
71 | */ |
72 | public static function getCoefficientOfRetention(float $retentionRate, float $rc, int $t) : float |
73 | { |
74 | return 1 / $t * \log($rc - $retentionRate); |
75 | } |
76 | |
77 | /** |
78 | * Predict the retention rate for period t |
79 | * |
80 | * @param float $rc Retention rate ceiling |
81 | * @param float $r Coefficient of retention |
82 | * @param int $t Period t |
83 | * |
84 | * @return float |
85 | * |
86 | * @since 1.0.0 |
87 | */ |
88 | public static function predictCustomerRetention(float $rc, float $r, int $t) : float |
89 | { |
90 | return $rc * (1 - \exp(-$r * $t)); |
91 | } |
92 | |
93 | /** |
94 | * Calculate the probability of a customer being active |
95 | * |
96 | * @param int $purchases Number of purchases during the periods |
97 | * @param int $periods Number of periods (e.g. number of months) |
98 | * @param int $lastPurchase In which period was the last purchase (lastPurchase = periods: means customer purchased in this period) |
99 | * |
100 | * @return float |
101 | * |
102 | * @since 1.0.0 |
103 | */ |
104 | public static function customerActiveProbability(int $purchases, int $periods, int $lastPurchase) : float |
105 | { |
106 | return \pow($lastPurchase / $periods, $purchases); |
107 | } |
108 | |
109 | /** |
110 | * Calculate the customer profits |
111 | * |
112 | * @param int $customers Amount of customers acquired |
113 | * @param float $acquistionCost Acquisition cost per customer |
114 | * @param float $revenue Revenues per period per customer |
115 | * @param float $cogs COGS per period per customer |
116 | * @param float $marketingCosts Ongoing marketing costs per period per customer |
117 | * @param float $discountRate Discount rate |
118 | * @param float $retentionRate Retention rate (how many customers remain) |
119 | * |
120 | * @return float |
121 | * |
122 | * @since 1.0.0 |
123 | */ |
124 | public static function getBerrysCustomerProfits( |
125 | int $customers, |
126 | float $acquistionCost, |
127 | float $revenue, |
128 | float $cogs, |
129 | float $marketingCosts, |
130 | float $discountRate, |
131 | float $retentionRate |
132 | ) : float |
133 | { |
134 | return $customers * ($revenue - $cogs) * ((1 + $discountRate) / (1 + $discountRate - $retentionRate)) |
135 | - $customers * $marketingCosts * ((1 + $discountRate) / (1 + $discountRate - $retentionRate)) |
136 | - $customers * $acquistionCost; |
137 | } |
138 | |
139 | /** |
140 | * Calculate the profitability of customers based on their purchase behaviour |
141 | * |
142 | * The basis for the calculation is the migration model using a markov chain |
143 | * |
144 | * @param float $discountRate Discount rate |
145 | * @param array $purchaseProbability Purchase probabilities for different periods |
146 | * @param array $payoffs Payoff vector (first element = payoff - cost, other elements = -cost, last element = 0) |
147 | * |
148 | * @return Matrix A vector which shows in row i the return of the customer if he didn't buy i - 1 times before |
149 | * (=recency of the customer = how many periods has it been since he bought the last time) |
150 | * |
151 | * @since 1.0.0 |
152 | */ |
153 | public static function calculateMailingSuccessEstimation(float $discountRate, array $purchaseProbability, array $payoffs) : Matrix |
154 | { |
155 | $count = \count($purchaseProbability); |
156 | $profit = new Vector($count, 1); |
157 | $G = Vector::fromArray($payoffs); |
158 | |
159 | $P = self::createCustomerPurchaseProbabilityMatrix($purchaseProbability); |
160 | $newP = new IdentityMatrix($count); |
161 | |
162 | // $i = 0; |
163 | $profit = $profit->add($G); |
164 | |
165 | for ($i = 1; $i < $count + 1; ++$i) { |
166 | $newP = $newP->mult($P); |
167 | $profit = $profit->add($newP->mult($G)->mult(1 / \pow(1 + $discountRate, $i))); |
168 | } |
169 | |
170 | return $profit; |
171 | } |
172 | |
173 | /** |
174 | * Calculate V of the migration model |
175 | * |
176 | * Pfeifer and Carraway 2000 |
177 | * |
178 | * @param float $discountRate Discount rate |
179 | * @param array $purchaseProbability Purchase probabilities for different periods |
180 | * @param array $payoffs Payoff vector (first element = payoff - cost, other elements = -cost, last element = 0) |
181 | * |
182 | * @return Matrix [0][0] returns the LTV |
183 | * |
184 | * @since 1.0.0 |
185 | */ |
186 | public static function migrationModel(float $discountRate, array $purchaseProbability, array $payoffs) : Matrix |
187 | { |
188 | $P = self::createCustomerPurchaseProbabilityMatrix($purchaseProbability); |
189 | $I = new IdentityMatrix(\count($purchaseProbability)); |
190 | |
191 | return $I->sub( |
192 | $P->mult(1 / (1 + $discountRate)) |
193 | )->inverse() |
194 | ->mult(Vector::fromArray($payoffs)); |
195 | } |
196 | |
197 | /** |
198 | * Calculate the purchase probability of the different purchase states. |
199 | * |
200 | * Pfeifer and Carraway 2000 |
201 | * |
202 | * A customer can either buy in a certain period or not. |
203 | * Depending on the result he either moves on to the next state (not buying) or returns to the first state (buying). |
204 | * |
205 | * @param int $period Period to evaluate (t) |
206 | * @param array $purchaseProbability Purchase probabilities |
207 | * |
208 | * @return Matrix [ |
209 | * [0][0] = probability of buying in period t if customer bought in t = 1 |
210 | * ... |
211 | * ] |
212 | */ |
213 | public static function migrationModelPurchaseProbability(int $period, array $purchaseProbability) : Matrix |
214 | { |
215 | $matrix = self::createCustomerPurchaseProbabilityMatrix($purchaseProbability); |
216 | $newMatrix = clone $matrix; |
217 | |
218 | for ($i = 0; $i < $period - 1; ++$i) { |
219 | $newMatrix = $newMatrix->mult($matrix); |
220 | } |
221 | |
222 | return $newMatrix; |
223 | } |
224 | |
225 | /** |
226 | * Create a matrix which contains the probabilities a customer will buy in period t |
227 | * |
228 | * @param array $purchaseProbability Purchase probabilities for the different periods |
229 | * |
230 | * @latex \begin{bmatrix} |
231 | * p_1 & 1 - p_1 & 0 \\ |
232 | * p_2 & 0 & 1 - p_2 \\ |
233 | * p_3 & 0 & 1 - p_3 \\ |
234 | * \end{bmatrix} |
235 | * |
236 | * @return Matrix [ |
237 | * p1, 1-p1, 0, |
238 | * p2, 0, 1-p2, |
239 | * p3, 0, 1-p3, |
240 | * ] where pi = Probability that customer buys in period i / moves from one state to the next state |
241 | * |
242 | * @since 1.0.0 |
243 | */ |
244 | private static function createCustomerPurchaseProbabilityMatrix(array $purchaseProbability) : Matrix |
245 | { |
246 | $matrix = []; |
247 | |
248 | $count = \count($purchaseProbability); |
249 | for ($i = 0; $i < $count; ++$i) { |
250 | $matrix[$i] = \array_fill(0, $count, 0); |
251 | $matrix[$i][0] = $purchaseProbability[$i]; |
252 | |
253 | $matrix[$i][ |
254 | $i === $count - 1 ? $i : $i + 1 |
255 | ] = 1 - $purchaseProbability[$i]; |
256 | } |
257 | |
258 | return Matrix::fromArray($matrix); |
259 | } |
260 | } |