Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
85.87% |
79 / 92 |
|
76.92% |
10 / 13 |
CRAP | |
0.00% |
0 / 1 |
Functions | |
85.87% |
79 / 92 |
|
76.92% |
10 / 13 |
45.74 | |
0.00% |
0 / 1 |
__construct | n/a |
0 / 0 |
n/a |
0 / 0 |
1 | |||||
fact | |
100.00% |
4 / 4 |
|
100.00% |
1 / 1 |
2 | |||
binomialCoefficient | |
100.00% |
16 / 16 |
|
100.00% |
1 / 1 |
5 | |||
ackermann | |
100.00% |
5 / 5 |
|
100.00% |
1 / 1 |
3 | |||
invMod | |
95.24% |
20 / 21 |
|
0.00% |
0 / 1 |
6 | |||
mod | |
100.00% |
3 / 3 |
|
100.00% |
1 / 1 |
2 | |||
isOdd | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
isEven | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getRelativeDegree | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getErf | |
100.00% |
3 / 3 |
|
100.00% |
1 / 1 |
2 | |||
getErfc | |
100.00% |
3 / 3 |
|
100.00% |
1 / 1 |
2 | |||
erfccheb | |
91.67% |
11 / 12 |
|
0.00% |
0 / 1 |
3.01 | |||
getInvErfc | |
0.00% |
0 / 11 |
|
0.00% |
0 / 1 |
42 | |||
generalizedHypergeometricFunction | |
100.00% |
11 / 11 |
|
100.00% |
1 / 1 |
6 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Math\Functions |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Math\Functions; |
16 | |
17 | /** |
18 | * Well known functions and helpers class. |
19 | * |
20 | * @package phpOMS\Math\Functions |
21 | * @license OMS License 2.0 |
22 | * @link https://jingga.app |
23 | * @since 1.0.0 |
24 | */ |
25 | final class Functions |
26 | { |
27 | /** |
28 | * Epsilon for float comparison. |
29 | * |
30 | * @var float |
31 | * @since 1.0.0 |
32 | */ |
33 | public const EPSILON = 4.88e-04; |
34 | |
35 | /** |
36 | * Constructor. |
37 | * |
38 | * @since 1.0.0 |
39 | * @codeCoverageIgnore |
40 | */ |
41 | private function __construct() |
42 | { |
43 | } |
44 | |
45 | /** |
46 | * Calculate gammar function value. |
47 | * |
48 | * Example: (7, 2) |
49 | * |
50 | * @param int $n Factorial upper bound |
51 | * @param int $start Factorial starting value |
52 | * |
53 | * @return int |
54 | * |
55 | * @since 1.0.0 |
56 | */ |
57 | public static function fact(int $n, int $start = 1) : int |
58 | { |
59 | $fact = 1; |
60 | |
61 | for ($i = $start; $i < $n + 1; ++$i) { |
62 | $fact *= $i; |
63 | } |
64 | |
65 | return $fact; |
66 | } |
67 | |
68 | /** |
69 | * Calculate binomial coefficient |
70 | * |
71 | * Algorithm optimized for large factorials without the use of big int or string manipulation. |
72 | * |
73 | * Example: (7, 2) |
74 | * |
75 | * @param int $n n |
76 | * @param int $k k |
77 | * |
78 | * @return int |
79 | * |
80 | * @since 1.0.0 |
81 | */ |
82 | public static function binomialCoefficient(int $n, int $k) : int |
83 | { |
84 | $max = \max([$k, $n - $k]); |
85 | $min = \min([$k, $n - $k]); |
86 | |
87 | $fact = 1; |
88 | $range = \array_reverse(\range(1, $min)); |
89 | |
90 | for ($i = $max + 1; $i < $n + 1; ++$i) { |
91 | $div = 1; |
92 | foreach ($range as $key => $d) { |
93 | if ($i % $d === 0) { |
94 | $div = $d; |
95 | |
96 | unset($range[$key]); |
97 | break; |
98 | } |
99 | } |
100 | |
101 | $fact *= $i / $div; |
102 | } |
103 | |
104 | $fact2 = 1; |
105 | |
106 | foreach ($range as $d) { |
107 | $fact2 *= $d; |
108 | } |
109 | |
110 | return (int) ($fact / $fact2); |
111 | } |
112 | |
113 | /** |
114 | * Calculate ackermann function. |
115 | * |
116 | * @param int $m m |
117 | * @param int $n n |
118 | * |
119 | * @return int |
120 | * |
121 | * @since 1.0.0 |
122 | */ |
123 | public static function ackermann(int $m, int $n) : int |
124 | { |
125 | if ($m === 0) { |
126 | return $n + 1; |
127 | } elseif ($n === 0) { |
128 | return self::ackermann($m - 1, 1); |
129 | } |
130 | |
131 | return self::ackermann($m - 1, self::ackermann($m, $n - 1)); |
132 | } |
133 | |
134 | /** |
135 | * Calculate inverse modular. |
136 | * |
137 | * @param int $a a |
138 | * @param int $n Modulo |
139 | * |
140 | * @return int |
141 | * |
142 | * @since 1.0.0 |
143 | */ |
144 | public static function invMod(int $a, int $n) : int |
145 | { |
146 | if ($n < 0) { |
147 | $n = -$n; |
148 | } |
149 | |
150 | if ($a < 0) { |
151 | $a = $n - (-$a % $n); |
152 | } |
153 | |
154 | $t = 0; |
155 | $nt = 1; |
156 | $r = $n; |
157 | $nr = $a % $n; |
158 | |
159 | while ($nr != 0) { |
160 | $quot = (int) ($r / $nr); |
161 | $tmp = $nt; |
162 | $nt = $t - $quot * $nt; |
163 | $t = $tmp; |
164 | $tmp = $nr; |
165 | $nr = $r - $quot * $nr; |
166 | $r = $tmp; |
167 | } |
168 | |
169 | if ($r > 1) { |
170 | return -1; |
171 | } |
172 | |
173 | if ($t < 0) { |
174 | $t += $n; |
175 | } |
176 | |
177 | return $t; |
178 | } |
179 | |
180 | /** |
181 | * Modular implementation for negative values. |
182 | * |
183 | * @param int $a a |
184 | * @param int $b b |
185 | * |
186 | * @return int |
187 | * |
188 | * @since 1.0.0 |
189 | */ |
190 | public static function mod(int $a, int $b) : int |
191 | { |
192 | if ($a < 0) { |
193 | return ($a + $b) % $b; |
194 | } |
195 | |
196 | return $a % $b; |
197 | } |
198 | |
199 | /** |
200 | * Check if value is odd. |
201 | * |
202 | * @param int $a Value to test |
203 | * |
204 | * @return bool |
205 | * |
206 | * @since 1.0.0 |
207 | */ |
208 | public static function isOdd(int $a) : bool |
209 | { |
210 | return (bool) ($a & 1); |
211 | } |
212 | |
213 | /** |
214 | * Check if value is even. |
215 | * |
216 | * @param int $a Value to test |
217 | * |
218 | * @return bool |
219 | * |
220 | * @since 1.0.0 |
221 | */ |
222 | public static function isEven(int $a) : bool |
223 | { |
224 | return !((bool) ($a & 1)); |
225 | } |
226 | |
227 | /** |
228 | * Gets the relative position on a circular construct. |
229 | * |
230 | * @example The relative fiscal month (August) in a company where the fiscal year starts in July. |
231 | * @example 2 = getRelativeDegree(8, 12, 7); |
232 | * |
233 | * @param int $value Value to get degree |
234 | * @param int $length Circle size |
235 | * @param int $start Start value |
236 | * |
237 | * @return int Lowest value is 0 and highest value is length - 1 |
238 | * |
239 | * @since 1.0.0 |
240 | */ |
241 | public static function getRelativeDegree(int $value, int $length, int $start = 0) : int |
242 | { |
243 | return \abs(self::mod($value - $start, $length)); |
244 | } |
245 | |
246 | /** |
247 | * Error function coefficients for approximation |
248 | * |
249 | * @var float[] |
250 | * @since 1.0.0 |
251 | */ |
252 | private const ERF_COF = [ |
253 | -1.3026537197817094, 6.4196979235649026e-1, |
254 | 1.9476473204185836e-2,-9.561514786808631e-3,-9.46595344482036e-4, |
255 | 3.66839497852761e-4,4.2523324806907e-5,-2.0278578112534e-5, |
256 | -1.624290004647e-6,1.303655835580e-6,1.5626441722e-8,-8.5238095915e-8, |
257 | 6.529054439e-9,5.059343495e-9,-9.91364156e-10,-2.27365122e-10, |
258 | 9.6467911e-11, 2.394038e-12,-6.886027e-12,8.94487e-13, 3.13092e-13, |
259 | -1.12708e-13,3.81e-16,7.106e-15,-1.523e-15,-9.4e-17,1.21e-16,-2.8e-17, |
260 | ]; |
261 | |
262 | /** |
263 | * Error function |
264 | * |
265 | * @param float $x X-Value |
266 | * |
267 | * @return float |
268 | * |
269 | * @since 1.0.0 |
270 | */ |
271 | public static function getErf(float $x) : float |
272 | { |
273 | return $x > 0.0 |
274 | ? 1.0 - self::erfccheb($x) |
275 | : self::erfccheb(-$x) - 1.0; |
276 | } |
277 | |
278 | /** |
279 | * Complementary error function |
280 | * |
281 | * @param float $x X-Value |
282 | * |
283 | * @return float |
284 | * |
285 | * @since 1.0.0 |
286 | */ |
287 | public static function getErfc(float $x) : float |
288 | { |
289 | return $x > 0.0 |
290 | ? self::erfccheb($x) |
291 | : 2.0 - self::erfccheb(-$x); |
292 | } |
293 | |
294 | /** |
295 | * Error function helper function |
296 | * |
297 | * @param float $z Z-Value |
298 | * |
299 | * @return float |
300 | * |
301 | * @throws \InvalidArgumentException |
302 | * |
303 | * @since 1.0.0 |
304 | */ |
305 | private static function erfccheb(float $z) : float |
306 | { |
307 | $d = 0.; |
308 | $dd = 0.; |
309 | |
310 | $ncof = \count(self::ERF_COF); |
311 | |
312 | if ($z < 0.) { |
313 | throw new \InvalidArgumentException("erfccheb requires nonnegative argument"); |
314 | } |
315 | |
316 | $t = 2. / (2. + $z); |
317 | $ty = 4. * $t - 2.; |
318 | |
319 | for ($j = $ncof - 1; $j > 0; --$j) { |
320 | $tmp = $d; |
321 | $d = $ty * $d - $dd + self::ERF_COF[$j]; |
322 | $dd = $tmp; |
323 | } |
324 | |
325 | return $t * \exp(-$z * $z + 0.5 * (self::ERF_COF[0] + $ty * $d) - $dd); |
326 | } |
327 | |
328 | /** |
329 | * Inverse complementary error function |
330 | * |
331 | * @param float $p P-Value |
332 | * |
333 | * @return float |
334 | * |
335 | * @since 1.0.0 |
336 | */ |
337 | public static function getInvErfc(float $p) : float |
338 | { |
339 | if ($p >= 2.0) { |
340 | return -100.; |
341 | } elseif ($p <= 0.0) { |
342 | return 100.; |
343 | } |
344 | |
345 | $pp = ($p < 1.0) ? $p : 2. - $p; |
346 | $t = \sqrt(-2. * \log($pp / 2.)); |
347 | $x = -0.70711 * ((2.30753 + $t * 0.27061) / (1. + $t * (0.99229 + $t * 0.04481)) - $t); |
348 | |
349 | for ($j = 0; $j < 2; ++$j) { |
350 | $err = self::getErfc($x) - $pp; |
351 | $x += $err / (1.12837916709551257 * \exp(-($x * $x)) - $x * $err); |
352 | } |
353 | |
354 | return ($p < 1.0? $x : -$x); |
355 | } |
356 | |
357 | /** |
358 | * Generalized hypergeometric function. |
359 | * |
360 | * pFq(a1, ..., ap; b1, ..., bq; z) |
361 | * |
362 | * @param array<int, float|int> $a Array of values |
363 | * @param array<int, float|int> $b Array of values |
364 | * @param float $z Z |
365 | * |
366 | * @return float |
367 | * |
368 | * @since 1.0.0 |
369 | */ |
370 | public static function generalizedHypergeometricFunction(array $a, array $b, float $z) : float |
371 | { |
372 | $sum = 0.0; |
373 | $aProd = \array_fill(0, 20, []); |
374 | $bProd = \array_fill(0, 20, []); |
375 | |
376 | for ($n = 0; $n < 20; ++$n) { |
377 | foreach ($a as $key => $value) { |
378 | $aProd[$n][$key] = $n === 0 ? 1 : $aProd[$n - 1][$key] * ($value + $n - 1); |
379 | } |
380 | |
381 | foreach ($b as $key => $value) { |
382 | $bProd[$n][$key] = $n === 0 ? 1 : $bProd[$n - 1][$key] * ($value + $n - 1); |
383 | } |
384 | |
385 | $temp = \array_product($aProd[$n]) / \array_product($bProd[$n]); |
386 | $sum += $temp * $z ** $n / self::fact($n); |
387 | } |
388 | |
389 | return $sum; |
390 | } |
391 | } |