Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
| Total | |
100.00% |
17 / 17 |
|
100.00% |
5 / 5 |
CRAP | |
100.00% |
1 / 1 |
| Correlation | |
100.00% |
17 / 17 |
|
100.00% |
5 / 5 |
9 | |
100.00% |
1 / 1 |
| __construct | n/a |
0 / 0 |
n/a |
0 / 0 |
1 | |||||
| bravaisPersonCorrelationCoefficientPopulation | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
| bravaisPersonCorrelationCoefficientSample | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
| autocorrelationCoefficient | |
100.00% |
7 / 7 |
|
100.00% |
1 / 1 |
2 | |||
| boxPierceTest | |
100.00% |
4 / 4 |
|
100.00% |
1 / 1 |
2 | |||
| ljungBoxTest | |
100.00% |
4 / 4 |
|
100.00% |
1 / 1 |
2 | |||
| 1 | <?php |
| 2 | /** |
| 3 | * Jingga |
| 4 | * |
| 5 | * PHP Version 8.1 |
| 6 | * |
| 7 | * @package phpOMS\Math\Statistic |
| 8 | * @copyright Dennis Eichhorn |
| 9 | * @license OMS License 2.0 |
| 10 | * @version 1.0.0 |
| 11 | * @link https://jingga.app |
| 12 | */ |
| 13 | declare(strict_types=1); |
| 14 | |
| 15 | namespace phpOMS\Math\Statistic; |
| 16 | |
| 17 | /** |
| 18 | * Correlation. |
| 19 | * |
| 20 | * @package phpOMS\Math\Statistic |
| 21 | * @license OMS License 2.0 |
| 22 | * @link https://jingga.app |
| 23 | * @since 1.0.0 |
| 24 | */ |
| 25 | final class Correlation |
| 26 | { |
| 27 | /** |
| 28 | * Constructor. |
| 29 | * |
| 30 | * @since 1.0.0 |
| 31 | * @codeCoverageIgnore |
| 32 | */ |
| 33 | private function __construct() |
| 34 | { |
| 35 | } |
| 36 | |
| 37 | /** |
| 38 | * Calculage bravais person correlation coefficient. |
| 39 | * |
| 40 | * Example: ([4, 5, 9, 1, 3], [4, 5, 9, 1, 3]) |
| 41 | * |
| 42 | * @latex \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y} |
| 43 | * |
| 44 | * @param array<int|float> $x Values |
| 45 | * @param array<int|float> $y Values |
| 46 | * |
| 47 | * @return float |
| 48 | * |
| 49 | * @since 1.0.0 |
| 50 | */ |
| 51 | public static function bravaisPersonCorrelationCoefficientPopulation(array $x, array $y) : float |
| 52 | { |
| 53 | return MeasureOfDispersion::empiricalCovariance($x, $y) / (MeasureOfDispersion::standardDeviationPopulation($x) * MeasureOfDispersion::standardDeviationPopulation($y)); |
| 54 | } |
| 55 | |
| 56 | /** |
| 57 | * Calculage bravais person correlation coefficient. |
| 58 | * |
| 59 | * Example: ([4, 5, 9, 1, 3], [4, 5, 9, 1, 3]) |
| 60 | * |
| 61 | * @latex \rho_{XY} = \frac{cov(X, Y)}{\sigma_X \sigma_Y} |
| 62 | * |
| 63 | * @param array<int|float> $x Values |
| 64 | * @param array<int|float> $y Values |
| 65 | * |
| 66 | * @return float |
| 67 | * |
| 68 | * @since 1.0.0 |
| 69 | */ |
| 70 | public static function bravaisPersonCorrelationCoefficientSample(array $x, array $y) : float |
| 71 | { |
| 72 | return MeasureOfDispersion::sampleCovariance($x, $y) / (MeasureOfDispersion::standardDeviationSample($x) * MeasureOfDispersion::standardDeviationSample($y)); |
| 73 | } |
| 74 | |
| 75 | /** |
| 76 | * Get the autocorrelation coefficient (ACF). |
| 77 | * |
| 78 | * @param array<int|float> $x Dataset |
| 79 | * @param int $k k-th coefficient |
| 80 | * |
| 81 | * @return float |
| 82 | * |
| 83 | * @since 1.0.0 |
| 84 | */ |
| 85 | public static function autocorrelationCoefficient(array $x, int $k = 0) : float |
| 86 | { |
| 87 | $squaredMeanDeviation = MeasureOfDispersion::squaredMeanDeviation($x); |
| 88 | $mean = Average::arithmeticMean($x); |
| 89 | $count = \count($x); |
| 90 | $sum = 0.0; |
| 91 | |
| 92 | for ($i = $k; $i < $count; ++$i) { |
| 93 | $sum += ($x[$i] - $mean) * ($x[$i - $k] - $mean); |
| 94 | } |
| 95 | |
| 96 | return $sum / ($squaredMeanDeviation * $count); |
| 97 | } |
| 98 | |
| 99 | /** |
| 100 | * Box Pierce test (portmanteau test). |
| 101 | * |
| 102 | * @param float[] $autocorrelations Autocorrelations |
| 103 | * @param int $h Maximum leg considered |
| 104 | * @param int $n Amount of observations |
| 105 | * |
| 106 | * @return float |
| 107 | * |
| 108 | * @since 1.0.0 |
| 109 | */ |
| 110 | public static function boxPierceTest(array $autocorrelations, int $h, int $n) : float |
| 111 | { |
| 112 | $sum = 0; |
| 113 | for ($i = 0; $i < $h; ++$i) { |
| 114 | $sum += $autocorrelations[$i] ** 2; |
| 115 | } |
| 116 | |
| 117 | return $n * $sum; |
| 118 | } |
| 119 | |
| 120 | /** |
| 121 | * Ljung Box test (portmanteau test). |
| 122 | * |
| 123 | * @param float[] $autocorrelations Autocorrelations |
| 124 | * @param int $h Maximum leg considered |
| 125 | * @param int $n Amount of observations |
| 126 | * |
| 127 | * @return float |
| 128 | * |
| 129 | * @since 1.0.0 |
| 130 | */ |
| 131 | public static function ljungBoxTest(array $autocorrelations, int $h, int $n) : float |
| 132 | { |
| 133 | $sum = 0; |
| 134 | |
| 135 | for ($i = 0; $i < $h; ++$i) { |
| 136 | $sum += 1 / ($n - ($i + 1)) * $autocorrelations[$i] ** 2; |
| 137 | } |
| 138 | |
| 139 | return $n * ($n + 2) * $sum; |
| 140 | } |
| 141 | } |