Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
100.00% |
38 / 38 |
|
100.00% |
1 / 1 |
CRAP | |
100.00% |
1 / 1 |
PolynomialRegression | |
100.00% |
38 / 38 |
|
100.00% |
1 / 1 |
7 | |
100.00% |
1 / 1 |
getRegression | |
100.00% |
38 / 38 |
|
100.00% |
1 / 1 |
7 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Math\Statistic\Forecast\Regression |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Math\Statistic\Forecast\Regression; |
16 | |
17 | use phpOMS\Math\Matrix\Exception\InvalidDimensionException; |
18 | use phpOMS\Math\Statistic\Average; |
19 | |
20 | /** |
21 | * Regression class. |
22 | * |
23 | * @package phpOMS\Math\Statistic\Forecast\Regression |
24 | * @license OMS License 2.0 |
25 | * @link https://jingga.app |
26 | * @since 1.0.0 |
27 | */ |
28 | final class PolynomialRegression |
29 | { |
30 | /** |
31 | * Get linear regression based on scatter plot. |
32 | * |
33 | * @param array<int|float> $x Obersved x values |
34 | * @param array<int|float> $y Observed y values |
35 | * |
36 | * @return array [a => ?, b => ?, c => ?] |
37 | * |
38 | * @throws InvalidDimensionException throws this exception if the dimension of both arrays is not equal |
39 | * |
40 | * @since 1.0.0 |
41 | */ |
42 | public static function getRegression(array $x, array $y) : array |
43 | { |
44 | if (($n = \count($x)) !== \count($y)) { |
45 | throw new InvalidDimensionException(\count($x) . 'x' . \count($y)); |
46 | } |
47 | |
48 | $xm = Average::arithmeticMean($x); |
49 | $ym = Average::arithmeticMean($y); |
50 | |
51 | $r = \range(0, $n - 1); |
52 | |
53 | $xTemp = []; |
54 | foreach ($r as $e) { |
55 | $xTemp[] = $e * $e; |
56 | } |
57 | |
58 | $x2m = Average::arithmeticMean($xTemp); |
59 | |
60 | $xTemp = []; |
61 | foreach ($r as $e) { |
62 | $xTemp[] = $e * $e * $e; |
63 | } |
64 | |
65 | $x3m = Average::arithmeticMean($xTemp); |
66 | |
67 | $xTemp = []; |
68 | foreach ($r as $e) { |
69 | $xTemp[] = $e * $e * $e * $e; |
70 | } |
71 | |
72 | $x4m = Average::arithmeticMean($xTemp); |
73 | $xym = 0.0; |
74 | |
75 | for ($i = 0; $i < $n; ++$i) { |
76 | $xym += $x[$i] * $y[$i]; |
77 | } |
78 | |
79 | $xym /= $n; |
80 | |
81 | $x2ym = 0.0; |
82 | for ($i = 0; $i < $n; ++$i) { |
83 | $x2ym += $x[$i] * $x[$i] * $y[$i]; |
84 | } |
85 | |
86 | $x2ym /= $n; |
87 | |
88 | $sxx = $x2m - $xm * $xm; |
89 | $sxy = $xym - $xm * $ym; |
90 | $sxx2 = $x3m - $xm * $x2m; |
91 | $sx2x2 = $x4m - $x2m * $x2m; |
92 | $sx2y = $x2ym - $x2m * $ym; |
93 | |
94 | $b = ($sxy * $sx2x2 - $sx2y * $sxx2) / ($sxx * $sx2x2 - $sxx2 * $sxx2); |
95 | $c = ($sx2y * $sxx - $sxy * $sxx2) / ($sxx * $sx2x2 - $sxx2 * $sxx2); |
96 | $a = $ym - $b * $xm - $c * $x2m; |
97 | |
98 | return [ |
99 | 'a' => $a, |
100 | 'b' => $b, |
101 | 'c' => $c, |
102 | ]; |
103 | } |
104 | } |