Code Coverage |
||||||||||
Lines |
Functions and Methods |
Classes and Traits |
||||||||
Total | |
100.00% |
17 / 17 |
|
100.00% |
8 / 8 |
CRAP | |
100.00% |
1 / 1 |
HypergeometricDistribution | |
100.00% |
17 / 17 |
|
100.00% |
8 / 8 |
8 | |
100.00% |
1 / 1 |
getPmf | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getMean | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getMode | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getVariance | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getStandardDeviation | |
100.00% |
1 / 1 |
|
100.00% |
1 / 1 |
1 | |||
getSkewness | |
100.00% |
2 / 2 |
|
100.00% |
1 / 1 |
1 | |||
getExKurtosis | |
100.00% |
2 / 2 |
|
100.00% |
1 / 1 |
1 | |||
getCdf | |
100.00% |
8 / 8 |
|
100.00% |
1 / 1 |
1 |
1 | <?php |
2 | /** |
3 | * Jingga |
4 | * |
5 | * PHP Version 8.1 |
6 | * |
7 | * @package phpOMS\Math\Stochastic\Distribution |
8 | * @copyright Dennis Eichhorn |
9 | * @license OMS License 2.0 |
10 | * @version 1.0.0 |
11 | * @link https://jingga.app |
12 | */ |
13 | declare(strict_types=1); |
14 | |
15 | namespace phpOMS\Math\Stochastic\Distribution; |
16 | |
17 | use phpOMS\Math\Functions\Functions; |
18 | |
19 | /** |
20 | * Hypergeometric distribution. |
21 | * |
22 | * @package phpOMS\Math\Stochastic\Distribution |
23 | * @license OMS License 2.0 |
24 | * @link https://jingga.app |
25 | * @since 1.0.0 |
26 | */ |
27 | final class HypergeometricDistribution |
28 | { |
29 | /** |
30 | * Get probability mass function. |
31 | * |
32 | * @param int $K Successful states in the population |
33 | * @param int $N Population size |
34 | * @param int $k Observed successes |
35 | * @param int $n Number of draws |
36 | * |
37 | * @return float |
38 | * |
39 | * @since 1.0.0 |
40 | */ |
41 | public static function getPmf(int $K, int $N, int $k, int $n) : float |
42 | { |
43 | return Functions::binomialCoefficient($K, $k) * Functions::binomialCoefficient($N - $K, $n - $k) / Functions::binomialCoefficient($N, $n); |
44 | } |
45 | |
46 | /** |
47 | * Get expected value. |
48 | * |
49 | * @param int $K Successful states in the population |
50 | * @param int $N Population size |
51 | * @param int $n Number of draws |
52 | * |
53 | * @return float |
54 | * |
55 | * @since 1.0.0 |
56 | */ |
57 | public static function getMean(int $K, int $N, int $n) : float |
58 | { |
59 | return $n * $K / $N; |
60 | } |
61 | |
62 | /** |
63 | * Get mode. |
64 | * |
65 | * @param int $K Successful states in the population |
66 | * @param int $N Population size |
67 | * @param int $n Number of draws |
68 | * |
69 | * @return int |
70 | * |
71 | * @since 1.0.0 |
72 | */ |
73 | public static function getMode(int $K, int $N, int $n) : int |
74 | { |
75 | return (int) (($n + 1) * ($K + 1) / ($N + 2)); |
76 | } |
77 | |
78 | /** |
79 | * Get variance. |
80 | * |
81 | * @param int $K Successful states in the population |
82 | * @param int $N Population size |
83 | * @param int $n Number of draws |
84 | * |
85 | * @return float |
86 | * |
87 | * @since 1.0.0 |
88 | */ |
89 | public static function getVariance(int $K, int $N, int $n) : float |
90 | { |
91 | return $n * $K / $N * ($N - $K) / $N * ($N - $n) / ($N - 1); |
92 | } |
93 | |
94 | /** |
95 | * Get standard deviation. |
96 | * |
97 | * @param int $K Successful states in the population |
98 | * @param int $N Population size |
99 | * @param int $n Number of draws |
100 | * |
101 | * @return float |
102 | * |
103 | * @since 1.0.0 |
104 | */ |
105 | public static function getStandardDeviation(int $K, int $N, int $n) : float |
106 | { |
107 | return \sqrt($n * $K / $N * ($N - $K) / $N * ($N - $n) / ($N - 1)); |
108 | } |
109 | |
110 | /** |
111 | * Get skewness. |
112 | * |
113 | * @param int $K Successful states in the population |
114 | * @param int $N Population size |
115 | * @param int $n Number of draws |
116 | * |
117 | * @return float |
118 | * |
119 | * @since 1.0.0 |
120 | */ |
121 | public static function getSkewness(int $K, int $N, int $n) : float |
122 | { |
123 | return ($N - 2 * $K) * \sqrt($N - 1) * ($N - 2 * $n) |
124 | / (\sqrt($n * $K * ($N - $K) * ($N - $n)) * ($N - 2)); |
125 | } |
126 | |
127 | /** |
128 | * Get Ex. kurtosis. |
129 | * |
130 | * @param int $K Successful states in the population |
131 | * @param int $N Population size |
132 | * @param int $n Number of draws |
133 | * |
134 | * @return float |
135 | * |
136 | * @since 1.0.0 |
137 | */ |
138 | public static function getExKurtosis(int $K, int $N, int $n) : float |
139 | { |
140 | return (($N - 1) * $N ** 2 * ($N * ($N + 1) - 6 * $K * ($N - $K) - 6 * $n * ($N - $n)) + 6 * $n * $K * ($N - $K) * ($N - $n) * (5 * $N - 6)) |
141 | / ($n * $K * ($N - $K) * ($N - $n) * ($N - 2) * ($N - 3)); |
142 | } |
143 | |
144 | /** |
145 | * Get cumulative distribution function. |
146 | * |
147 | * @param int $K Successful states in the population |
148 | * @param int $N Population size |
149 | * @param int $k Observed successes |
150 | * @param int $n Number of draws |
151 | * |
152 | * @return float |
153 | * |
154 | * @since 1.0.0 |
155 | */ |
156 | public static function getCdf(int $K, int $N, int $k, int $n) : float |
157 | { |
158 | return 1 - Functions::binomialCoefficient($n, $k + 1) |
159 | * Functions::binomialCoefficient($N - $n, $K - $k - 1) |
160 | / Functions::binomialCoefficient($N, $K) |
161 | * Functions::generalizedHypergeometricFunction( |
162 | [1, $k + 1 - $K, $k + 1 - $n], |
163 | [$k + 2, $N + $k + 2 - $K - $n], |
164 | 1 |
165 | ); |
166 | } |
167 | } |